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Abstract— The Reconfigurable Integrated System Array is a
new form of field programmable digital device incorporating
both hardware and software reconfigurable elements. RISA
was developed specifically for implementing biologically inspired
electronic systems. The architecture is particularly suited for
investigating evolvable hardware due to the flexibility of RISA’s
configuration system. Fine grained partial reconfiguration is
supported and random configuration bitstreams will not cause
device damage. This paper describes the new RISA chip and the
features that make it suitable for bio-inspired applications.

I. INTRODUCTION

The vast majority of electronic components are designed
by humans and are intended for use in human designed
systems. Component datasheets provide specific operational
instructions allowing a designer to make use of a device and
avoid their misuse. Devices that incorporate programmable
elements, whether FPGA, microcontroller or the most basic
PLD use specific configuration systems; tailored hardware and
protocols provide access to the user configurable parts. Over-
all, commercial electronic components are heavily dependant
on being utilised in a constrained and correct manner.

If the trained designer is removed from the system design
process and the operational constraints of components are
ignored, the likely result is at best, a non-working system
and, at worst, damaged components. Ignoring even the sim-
plest procedure or instruction can lead to problems such as
incorrect package alignment, bad device programming, wiring
contention, poor power planning and clock skew problems.

Adhering to operational constraints avoids component dam-
age. However, manufacturer imposed constraints also limit
the potential functionality of a device. Many programmable
devices can only be configured in a particular fashion. It is
not always possible to program a device in what could be
considered the most flexible manner.

The power of evolutionary design techniques is their ability
to search throughout the problem solution space, evaluating
novel solutions that conventional design would not consider.
Unfortunately, this process is not immediately compatible with
the very constrained manner in which electronic components
should be used. Electronics will allow you to do things you
should not, and in contrast, it is not always possible to achieve
the flexibility that evolution can make use of. In essence,

commercial devices are not designed to be utilised using such
an unconstrained and exploitive technique.

Clearly electronic systems have been designed using evo-
lutionary processes. However, unless evaluation is undertaken
by simulation, or the potential of damage is inconsequential,
or the inflexibility of device manipulation can be tolerated, it
is necessary to constrain solutions such that their evaluation is
allowable within the operational constraints of the underlying
hardware. Constraining evolution in such a manner restricts
the search space and the ability to find a novel solution.

The highly configurable nature of field programmable de-
vices has made them a very popular choice for evolving
electronic systems [1]–[3]. Unfortunately, they suffer from the
constraints problems outlined above. Reconfiguration means
that multiple candidate solutions can be tested. However,
solutions must be constrained to safe configurations and the
flexibility of reconfiguration is limited to the options available
in the device.

Ideally, the evolutionary process should have the ability to
search as widely, freely and safely as possible. What evolvable
hardware really needs are devices that have very flexible
and inherently safe configuration systems. Ideally, devices
need fine grained configuration and be random configuration
safe. However, commercial devices either do not posses these
properties or only in a very limited manner. For example, cur-
rent Xilinx® devices only have course partial reconfiguration
capabilities [4]. The older XC6200 [5] series was an exception,
having a more flexible configuration system, however, it is no
longer manufactured.

Two approaches can be undertaken to overcome this prob-
lem. The first, being the easiest, is to implement a custom
reconfigurable architecture on-top of a standard device [6], [7].
This allows the designer to create a reconfigurable platform
with features suitable for evolution. Unfortunately, imple-
menting one reconfigurable circuit upon another is inefficient,
limiting the size of circuit available for use.

The second approach is to design and manufacture a new
device. An ASIC solution provides the maximum flexibility to
the designer. However, the greater cost of ASIC fabrication in
comparison to FPGA implementation makes this approach less
popular, but certainly not unheard of [8]–[10]. This is the ap-
proach taken and described in this paper. The Reconfigurable



Fig. 1. The RISA architecture. A two dimensional array of highly
reconfigurable RISA Cells.

Integrated System Array (RISA) architecture is a new type
of field programmable electronic platform designed to support
bio-inspired research, including evolutionary design.

Section II introduces the RISA architecture. Sections III &
IV describe its two main components: a custom microcon-
troller core and an FPGA fabric. A disucssion in Section V
concludes the paper.

II. THE RISA ARCHITECTURE

The Reconfigurable Integrated System Array (RISA) archi-
tecture is a new form of reconfigurable digital device. The
architecture incorporates both hardware and software recon-
figurability in the form of FPGA blocks and a microcontroller
array. The architecture is illustrated in Figure 1.

The project aim was to create a new device more appropriate
to implementing bio-inspired applications, in particular those
with a cellular structure. Each node of the architecture’s array
is constructed from a microcontroller and FPGA, forming
the Integrated System referred to in the architecture’s name.
Figure 2 illustrates one of these nodes, called a RISA cell,
and how its structure is inspired by that of a biological cell.
The microcontroller provides a simple method of performing
cellular specialisation, being able to control the configuration
of the FPGA. The flexibility of the FPGA fabric makes it ideal
for implementing a variety of cellular functions.

The architecture’s cellular inspiration does not limit the
device to implementing only cell-based systems; the architec-
ture is still applicable to other applications such as evolvable
hardware. The following features highlight the devices benefits
over commercial devices:

• A fine grained partial reconfiguration system. Bitstream
loading occurs without disrupting circuit operation and
subsequent reconfiguration occurs in a single clock pulse.

• The architecture’s multiplexer based configurable fabric
can not be configured into a contentious state. Therefore,
it is possible to use random bitstreams without risk of
device damage.

Fig. 2. The RISA cell is inspired by the structure of biological cells. The
cell’s functional flexibility is achieved by the integration of a microcontroller
and FPGA.

• Each RISA cell’s microcontroller can be used to perform
intrinsic reconfiguration of the FPGA fabric.

• Each microcontroller has a dedicated full-duplex, hard-
ware flow-controlled communication link with its four
nearest neighbours.

The RISA microcontroller and FPGA fabric, the two main
parts of the architecture, are described in Sections III and IV
respectively.

III. SNAP

A custom microcontroller core, called the Simple Net-
worked Application Processor (SNAP), was developed for the
RISA architecture. As the name suggests, the microcontroller
is suited to applications requiring a loosely coupled processor
network. Dedicated modules provide an easy method of inter-
core communication. However, the microcontroller is also
designed for close integration with the hosting RISA cell’s
FPGA fabric. FPGA configuration can be driven from the
microcontroller, and the core’s instruction set simplifies bit-
stream creation and manipulation. A simplified illustration of
the SNAP core is shown in Figure 3.

SNAP is a 4 stage pipelined RISC core. It has a 16 bit
data width and a 16 bit address space. A Von-Neumann
memory architecture is used in order to make the most efficient
use of the core’s memory space, since a single memory
space avoids unused program space that could be used for
data storage. As well as standard computational operations,
a number of additional function modules are accessible via
the core’s register file. There are 128 register file locations,
the assignment of these being deliberately very flexible. In
the configuration used in the first RISA chip, 32 locations are
used as working registers, the rest are available for connecting
to peripheral modules. This approach allows designers to
specialise the SNAP core to their purpose by including custom



Fig. 3. The SNAP microcontroller, a 16 bit data width, 16 bit address space, 4 stage pipelined, RISC, Von Neumann memory design. Peripheral modules,
accessed via the register file provide extra functionality.

peripheral modules. Descriptions of the default set of modules
are given below:

Configuration Access Port - The Configuration Access
Ports (CAPs) are used to control the microcontroller’s neigh-
bouring section of FPGA fabric. As described further in
Section IV-A, the two CAPs provide access to the logic and
routing configuration and selection chains. The two CAPs are
independent and can be operated concurrently to speed-up
FPGA configuration time.

Random Number Generator - A 8x8 cellular automata
(CA), based on Shackleford’s design [11], is used to generate
a stream of pseudo-random numbers. The CA connectivity
and next state logic were evolved to find a configuration that
generated a number sequence satisfying the most tests from
the DIEHARD [12] battery of randomness tests.

SNAPLink - The SNAPLink is the main inter-core com-
munication port. Each core has four independent modules for
north, south, east and west connections. Hardware flow control
is provided to simplify the transfer of data between cores,
which can be achieved as easily as writing to, or reading from,
the appropriate SNAPLink register.

SysLink - The SysLink is a general purpose full-duplex
serial interface. The link’s UART is compatible with a standard
PC serial port. With appropriate line-driving the SysLink can
be directly connected to a PC for debugging purposes.

FPGA Link - The FPGA Links provide general purpose
connections between the SNAP core and the neighbouring
FPGA fabric. These bidirectional ports can be configured into
the FPGA routing.

Counters and WDT - The 16-bit Counters add timing and
counting functionality. These modules can be used solely in
the SNAP core or to supply different digital waveforms to the

FPGA fabric. The Watchdog Timer (WDT) provides a simple
method of failure recovery.

IO Port - General purpose connectivity external to the RISA
chip is made available via the bidirectional IO Ports.

A. Instruction Set & Encoding
The design of the SNAP instruction set and instruction

encoding is key to the core’s successful operation for ap-
plications such as evolutionary design and dynamic FPGA
configuration control. The core’s reduced instruction set con-
tains 19 instructions which are listed in Table I. Included in
this set are instructions important to both FPGA bitstream
and evolutionary genotype data manipulation. For example,
bs and bc instructions are particularly useful for performing
evolutionary mutation, whereas FPGA bitstream alignment can
be quickly performed using rol and ror instructions. As
shown in Table I each instruction can be used to operate on
two register stored values, type 0, or a register and a instruction
encoded literal value, type 1.

The power of what initially seems a limited instruction set
is greatly enhanced by a set of execution controls. As shown
in Figure 4 the instruction encoding includes a set of control
flags that determine whether an instruction executes and how
it affects the state of the microcontroller. These control flags
are described below:

insnEnable (bit 30) - This is a global instruction execution
enable flag. When set to zero the instruction will still pass
through the microcontroller pipeline but will not execute, no
results are stored, and no status flags are set. This single bit
flag can easily be toggled without affecting any other instruc-
tion parameter and therefore provides a powerful control for
self-modifying code.

conditional (bit 29) - The conditional flag declares whether
the instruction’s execution should be dependant on a microcon-



TABLE I
SNAP INSTRUCTION SET

Mnemonic Op. Code Instruction (Type 0) Instruction (Type 1) Operation
add 0 regA = regA + regB regA = regA + lit Addition
addc 1 regA = regA + regB + c regA = regA + lit + c Addition with carry
sub 2 regA = regA − regB regA = regA − lit Subtraction
subc 3 regA = (regA − regB)− b regA = (regA − lit)− b Subtraction with carry
neg 4 regA = −regA regA = −lit Negation
and 5 regA = regA & regB regA = regA & lit Bitwise and
or 6 regA = regA | regB regA = regA | lit Bitwise or
xor 7 regA = regA ∧ regB regA = regA ∧ lit Bitwise exclusive or
rol 8 regA = regA � regB regA = regA � lit Rotate left (towards MSB)
ror 9 regA = regA � regB regA = regA � lit Rotate right (towards LSB)
bs 10 regA = regA | (1 � regB) regA = regA & (1 � lit) Bit set
bc 11 regA = regA & !(1 � regB) regA = regA & !(1 � lit) Bit clear
mov 12 regA = regB regA = lit Move
ld 13 regA = MEM [regB] regA = MEM [lit] Load
st 14 MEM [regB] = regA MEM [lit] = regA Store
bra 15-0 PC = regA PC = lit Branch
reti 15-1 PC = regA; GIE = 1 PC = lit; GIE = 1 Return from interrupt, set global interrupt enable bit
fset 15-2 Flags = regA Flags = lit Set Flags
cset 15-3 Condition = regA Condition = lit Set Condition for Type 1 instructions

Fig. 4. Instruction Encoding.

troller status condition. The conditions are listed in the third
and fourth column of Table II. Type 0 and special instructions
have the condition code encoded in the instruction, whereas
Type 1 standard instruction use a separate condition code
register, set via the cset instruction.

flagSet (bit 28) - By default, instructions do not alter the
microcontroller status flags. This bit causes the flags to be
updated to reflect the status of an instruction’s result. The
flags are those listed in the second column of Table II. The
default of not setting flags means many instructions can be
made conditional on the same instruction result.

writeBack (bit 27) - The writeBack flag controls whether
the result of the operation is stored. Disabling this flag and
enabling the flagSet flag converts any instruction into a non-
destructive test operation.

TABLE II
SNAP STATUS FLAGS AND EXECUTION CONDITIONS

# Status
Flag Condition Condition

0 Z Zero/Equal Not Zero/Not equal
1 CB Carry/borrow No Carry/No Borrow
2 N Negative Positive
3 O Overflow No Overflow
4 ET0 Less than Greater or equal
5 ET1 Less or equal Greater than
6 ET2 Less than (unsigned) Greater than (unsigned)
7 Global Interrupt Enable Not GIE

8-15 External flags 0-7 Not EF 0-7

skipNextInsn (bit 15) - When set, the skipNextInsn flag
causes the microcontroller to disable the next instruction.
This flag is especially useful when used with a conditional
instruction and the next instruction is a branch.

interruptSafe (bit 14) - The interruptSafe flag is used to
stop an interrupt branch during an instruction’s execute stage.
This is required when an instruction accesses a read-sensitive
register such as a FIFO. Such a source would return a different
value when re-read after return from an interrupt. Setting the
interruptSafe bit postpones the interrupt and allows the read
value to be stored.

B. SNAP-FPGA Integration

Being able to perform intrinsic FPGA reconfiguration is one
of the main motivations for coupling a microcontroller with the
FPGA fabric. The dedicated CAP modules make this a simple
operation. However, there are a number of methods that further
integrate the two RISA Cell components. As mentioned, the
FPGA Link provides a general purpose interface. In addition,



Fig. 5. The FPGA fabric is formed by an array of Clusters. Each Cluster contains four function units that contain the configurable logic elements.

the SNAP counters can be driven by the FPGA and also
generate waveforms that drive FPGA signals.

The SNAP core has a number of interrupt sources that
indicate events triggered in the peripheral modules. Among
these interrupt sources are interrupt request lines connected to
the FPGA fabric. This allows the FPGA to trigger an interrupt
service routine, for example, to read data presented at the
FPGA Link ports.

Execution of microcontroller code can be further controlled
by FPGA signals that drive SNAP condition codes. As shown
in Table II, conditions 7 to 15 are driven from external sources.
Depending on the configuration, these sources are a mixture of
off-chip inputs and signals driven by the FPGA fabric. Using
this technique the execution of blocks of SNAP code can be
made dependant of FPGA signal states.

IV. FPGA FABRIC

The FPGA fabric provides a hardware reconfigurable ele-
ment to the RISA architecture. The FPGA architecture does
not attempt to compete with commercial devices in terms
of density and flexibility of circuit implementation but aims
to provide a more appropriate configuration system for bio-
inspired systems. In particular, as mentioned earlier, by of-
fering fine grained partial reconfiguration and being random
bitstream safe.

The main configurable component of the gate array is the
Cluster. Each cluster contains logic circuitry and the routing
for interconnecting internal circuity and clusters. The Function
Unit is the main configurable logic element. There are four
Function Units in each Cluster. Figure 5a illustrates the FPGA
structure.

The circuitry of the Function Unit contains three core
elements: a Function Generator, a 2-1 multiplexer, and a
single D-type flip-flop. These may be used individually, but
can be combined to provide extra functionality such as the
configurations listed below.

• 4 input, 1 output Look-Up Table (LUT)

• 16x1 bit RAM
• 1 to 16 bit variable length Shift register block (extendible

via a dedicated shift chain to other clusters)
• 4-1 multiplexer
• 1 bit full adder with fast carry chains for expansion into

other clusters
The routing scheme is critical to creating a configurable

system that can tolerate random configurations. The RISA
FPGA uses multiplexer based routing as opposed to a bus
based scheme. This avoids the possibility of configuring a
wiring resource into contention; driving the same wire with
different logic values.

A second potential problem is the creation of combinatorial
feedback loops. A feedback path can create fast oscillations,
which unnecessarily consume power, cause noise in neigh-
bouring signals via crosstalk and can cause metastability
issues on connected registers. The RISA FPGA uses directed
combinatorial routing so that unregistered feedback paths can
not be created. As indicated in Figure 5a, each of the Cluster’s
four Function Units are assigned a different direction. This
refers to the Function Unit’s combinatorial routing direction.
Using this scheme, a north Function Unit can only have a
purely combinatorial connection to the north Function Units
of Clusters to the north. Conversely, a registered signal, one
output from a flip-flop, is free to connect in any direction.

Figure 5b illustrates the connections for a Cluster’s East
Function Unit, those for the North, South and West Function
Units being removed for clarity. Any input can be connected to
a registered logic function, whereas the purely combinatorial
circuitry can only accept inputs from eastbound combinatorial
signals and registered signals.

A. FPGA Configuration

The RISA FPGA Fabric uses two separate serial data chains
to configure the logic circuitry and the routing connectivity.
This approach provides for a faster configuration system.
Both chains can be utilised simultaneously therefore allowing



Fig. 6. The RISA FPGA configuration chains are divided into switchable sub-chains that can be targeted for configuration individually or in combination.
Configuration data is loaded without affecting current device operation.

concurrent configuration of logic and routing. Additionally,
two shorter chains means that targeting an area of the FPGA
fabric using RISA’s partial configuration process is also faster.

Rather than creating a configuration chain from the registers
that control the FPGA’s configurable resources, a separate
serial data chain is used. This dedicated shift chain can be
operated without affecting the currently configured circuit.
Once data is loaded, it can be simultaneously loaded into the
controlling registers.

Figure 6b shows the two types of configurable element
used in the FPGA fabric. The Configurable Bit has a single
control output, q, that is used to drive components such as
a routing multiplexer. The Configurable Register acts like a
normal D-type Flip-flop, but with a configurable initial output
value. From the circuit diagram it is clear to see the separation
between the configuration chain registers, those connected to
cnfDIn and cnfDOut, and the registers that are configuration
targets.

Further inspection of Figure 6b shows that the values
of target registers can be loaded back into those of the
configuration chain. This is useful in a number of ways. It
is possible to take a snapshot of the current target register
values and read the values back. This is more useful for
the Configurable Register elements whose values will reflect
the states of the configured circuitry. Another use is to read
back configurations for subsequent adjustment. Use of the
configuration chain removes previous content, therefore, after
adjusting one area of the device, it is possible to load back
another area’s configuration onto the chain for read back and
adjustment. Consequently, it is not always necessary to keep
an alternate copy of the complete configuration data.

Partial reconfiguration is achieved by dividing the config-
uration chains into sub-chain units. Each sub-chain can be
individually selected for inclusion into the main configuration
chain. Using this system, it is possible to select a single sub-
chain, a combination, or the complete device for configuration.
A single sub-chain represents either all the configurable logic
or all the routing resources in a Cluster.

Figure 6a shows how sub-chain connectivity is controlled.
Selection units, labelled ConfigSelectUnit, are used to either
switch a sub-chain into the main chain, or to cause it to be
bypassed. The state of these selection units is controlled by

a separate chain. This chain is considerably shorter than the
main configuration chain it controls, therefore, the selection
of target areas can be set quickly.

In summary, the RISA configuration system uses four serial
data chains. These are used in pairs, one pair configures
routing connectivity, the other, the logic circuity. One chain
of the pair is used to shift the actual configuration data, the
other is used to select which parts are to be targeted. This
approach provides a mechanism for quick and fine grained
partial reconfiguration.

V. DISCUSSION

The RISA architecture offers a new reconfigurable device
for investigating bio-inspired systems. The architecture’s de-
sign offers end-users maximum flexibility in device operation.
The configuration system is simple, quick and provides a
level of control not found in commercial FPGA devices. The
integration of a microcontroller array adds a new dimension
to reconfigurable architectures, providing a distributed recon-
figurable software element.

A variety of evolutionary design techniques can be un-
dertaken using the RISA architecture. Intrinsic evolution of
electronic circuits can be performed using the FPGA fabric
for implementing candidate solutions and the microcontroller
to drive the evolutionary algorithm. What is more, the evo-
lutionary process can be accelerated by performing multiple
evaluations of candidate solutions in parallel, using the SNAP
network to transfer fitness information. The hardware random
number generator further simplifies the task by removing the
need for a time consuming software based number generator.

Performing genetic programming is also possible using the
SNAP microcontroller. The Von-Neumann memory architec-
ture allows access to the stored program which provides
a means to create self-modifying code. This, coupled with
the instruction execution control inherent in the instruction’s
encoding, provides methods for implementing evolutionary
variation operators. Furthermore, the microcontroller array
once more provides a platform for accelerating evolution by
supporting parallel fitness evaluations.

Further application areas include artificial neural networks
[13], where the architecture is ideal for implementing time-
multiplexed neuron models. RISA’s cellular structure is also



appropriate for implementing Embryonic Arrays [14], [15], the
nucleus inspired microcontroller can control cellular speciali-
sation and positioning whereas the FPGA fabric performs the
role of cellular function.

The first RISA device has only recently been fabricated,
therefore its full potential is still to be established. Further
work will uncover new application areas. Further information
on the RISA device can be found on the project website:
http://www.bioinspired.com/users/ajg112.
The site includes schematics and VHDL code.
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