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Evolvable hardware offers much for the future of complex systems design. Evolutionary techniques
not only have the potential for larger solution space coverage, but when implemented on hardware,
also allow system designs to adapt to changes in the environment, including failures in system
components. This article reviews a number of novel techniques, all based in the field of bio-inspired
systems, that provide varying degrees of dependability over and above standard designs. In partic-
ular, three different techniques are considered: using FPGAs and ideas from developmental biology
to create designs that possess emergent fault-tolerant properties, using FPGAs and continuous evo-
lution to circumvent faults as and when they occur, and, finally, we consider a novel ASIC designed
and built with bio-inspired systems in mind.
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1. INTRODUCTION

With the increase in system complexity, performing complete fault coverage at
the testing phase of the design cycle is very difficult to achieve, if not impossible.
In addition, environmental effects such as electromagnetic interference, misuse
by users, and the natural ageing of components mean system faults are likely
to occur. These faults can cause errors which, if left untreated, could cause
system failure. The role of fault tolerance is to deal with the errors caused by
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faults in order to avoid failure. Fault tolerance along with fault detection and
recovery are techniques used in the design, implementation, and operation of
dependable computing systems [Lee and Anderson 1990].

Fault tolerance is increasingly a crucial part of system designs. Many systems
have part or all of their function classified as critical in one form or another.
Since fully testing a system is generally unrealistic, critical functions must be
protected online. This is often achieved by using fault tolerance to cope with
errors produced during the operation of the system.

Traditionally, two approaches are taken, both requiring the replication of
the system, or system subsections, to be protected. Simple static redundancy
(such as N-version systems [Lee and Anderson 1990]) involves the concurrent
operation of redundant modules each contributing to a majority decision for a
final output. Alternatively, dynamic redundancy operates using a single mod-
ule, and when a failure is detected or expected, one of the redundant modules is
switched into its place. However, these approaches are achieved at the expense
of increased equipment needs due to the required replication of hardware and
increased design time and costs. These redundancy schemes are termed space
redundancy as the replicated sections are physically distributed over space.
Another category, time redundancy, benefits from not requiring a replication of
hardware, instead the redundancy is distributed over time. The same operation
is repeated, and an output achieved from a consensus of the individual runs.
All these redundancy schemes apply equally to a hardware process, a software
process, or a combination of both.

Providing continual fault-free operation in a system implies a continual map-
ping of a logical system onto a nonfaulty physical system. When faults arise, a
mechanism must be provided for reconfiguring the physical system such that
the logical system can still be represented by the remaining nonfaulty process-
ing elements. Whether the physical platform is a distributed software processor
system or consists purely of hard circuitry, for fault tolerance, redundancy in
the system’s basic processing elements is required. The reconfiguration mech-
anisms that control utilization of these processing elements can be considered
to be based on one of two types of scheme: time-based redundancy reallocation
or hardware-based redundancy reallocation.

Time-based use of redundancy involves distributing the function of faulty
processing elements among neighboring resources. When reconfiguration oc-
curs, processing elements dedicate some time to performing their own tasks and
some to performing the faulty neighbor’s functions, possibly resulting in some
degradation of the system’s performance. In addition, the system operations
that are being performed must be sufficiently flexible to ensure their realloca-
tion can be simply performed in real time. Reallocating processes in a hardware
redundancy scheme requires spare processing elements and interconnects in
order to replace those that become faulty. For this process, reconfiguration algo-
rithms must optimize the use of spares. In the ideal case, a processing system
with N spares is able to tolerate N faulty processing elements. However, in
practice, this goal is far from being achieved. Reconfiguration of the functional
system may not be possible due to limitations of the interconnection capabilities
and available resources of each cell.
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The majority of hardware redundancy reconfiguration techniques rely on
complex algorithms to reassign physical resources to the elements of the logi-
cal array. In most cases, these algorithms are executed by a central controller
which also performs diagnostic functions and accomplishes the reconfiguration
of the physical system. This approach has been demonstrated to be effective,
but its centralized nature makes it prone to collapse if the control unit fails.
These mechanisms also rely on the designer making a priori decisions on re-
configuration strategies and data/code movement which are prone to error and
may in practice be less than ideal. Furthermore, the timing of signals involved
in the global control are often prohibitively long and are therefore unsuitable
for applying to the control of high-speed systems.

An alternative approach is to distribute the diagnosis and reconfiguration
algorithms among all the processing elements in the system. In this way, no
central agent is necessary and, consequently, the reliability and time response
of the system should improve. However, this decentralised approach has tended
to increase the complexity of the reconfiguration algorithm and the amount of
communications within the network. In addition, considerable work is required
in producing redundancy [Ortega et al. 2000].

Traditionally, fault tolerance has been added explicitly to system designs
by including redundant hardware and/or software which take over when an
error has been detected. A novel alternative approach would be to design the
system in such a way that the redundancy was incorporated implicitly into the
hardware and/or software during the design phase. This should provide a more
holistic approach to the design process [Ortega et al. 2000; Hollingworth et al.
2000; Canham and Tyrrell 2003; Tyrrell et al. 2001; Bradley and Tyrrell 2002].
We already know that genetic algorithms and genetic programming can adapt
and optimize the behavior and structure of solutions to perform a specific task
[Fogel 2006], but the aim here is that they should learn to deal with faults
within their operation space. This implicit redundancy would make the system
response invariant to the occurrence of faults [Thompson et al. 1999; Layzell
and Thompson 2000].

This article illustrates a number of novel techniques, all based in the field
of bio-inspired electronics, that provide varying degrees of dependability over
and above standard designs. In particular, three different techniques are con-
sidered: using FPGAs and ideas from developmental biology to create designs
that possess emergent fault-tolerant properties, using FPGAs and continuous
evolution to circumvent faults as and when they occur, and, finally, we consider
a novel ASIC, designed and built with bio-inspired systems in mind, that show
how this too can cope with unexpected events during operation.

2. DEVELOPMENTAL TECHNIQUES

Multicellular organisms, the products of long-term biological evolution, demon-
strate strong principles for the design of complex systems. Their nascent behav-
iors, such as growth, cloning (self-replication) and healing (self-repair and fault
tolerance), are attracting increasing interest from electronic engineers. All of
these characteristics are encoded in the information stored in the genome of
the fertilized cell (zygote).
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Fig. 1. A cell pattern based on the French flag as originally used by Wolpert to describe cellular
development.

The process of growth from a single zygote to a mature organism is called
development. Development is controlled by genes which determine the synthe-
sis of proteins. The activity of genes sets up the complex interactions between
different proteins, between proteins and genes within cells, and hence the in-
teractions between cells. The development of an embryo is determined by these
interactions [Wolpert 2002]. Figure 1 represents a cell pattern whose formation
is controlled by the concentrations of a morphogen [Wolpert 2002]. Based on the
level of morphogen in the cells, each cell develops into a specific type according
to threshold values. These are extremely robust processes and can be subjected
to very high levels of failure and still manage to achieve the final goal. This work
looks at using development as a way of creating electronic systems based on a
cellular array, which we show have similar inherent robustness characteristics
[Liu et al. 2005].

2.1 Cell Structure and Intercell Connections

One of the most fundamental features of development is the universal cell struc-
ture; each of the cells in a multicellular organism contains the entire genetic
material, the genome. Similarly, in the proposed model, each cell is universal
and able to perform any function required by the full organism. As shown in
Figure 2, every cell only has direct access to the information of its four adja-
cent cells; no direct long distance interaction between cells is permitted. The
internal structure of a cell is shown in Figure 3. Each digital cell is composed
of three main components: control unit (CU), execution unit (EU) and chemical
diffusion module (CD).

The CU stores information about the cell, including the cell’s state (type) and
a record of its local virtual chemical level. At every time-step of the model, a
next states and chemical generator (NSCG), contained within the CU, deter-
mines the cell’s next state and next chemical level according to its own and its
neighbors current state and chemical level. The operation of generating next
state and chemical values is achieved using combinatorial circuits. As shown
in Figure 2, these circuits make use of the connections to the cell’s 4 immediate
neighbors.

The execution unit circuit provides the cell’s ability to perform the actual
operations of the target application. Using 3-bit-wide signals, data is input
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Fig. 2. Interconnection of cells.

Fig. 3. Digital cell structure.

to each EU from the immediate west and north neighbors and output to the
east and south, this configuration avoids the problem of combinatorial feedback
paths being created. The state of the cell provides a further input to the EU. The
EU uses a 2-bit function selection signal to determine the state, or type, of the
cell: 0 denotes a dead cell, other values encode a specific function. Dead cells are
those awaiting specialization; they perform no operation and simply propagate
their north and west inputs unaltered to their south and east neighbors. At
present, only combinational applications are considered, hence the EU is also
a combinational circuit.

The internal logical structures of the EU and the NSCG are generated by
an evolutionary process, in this case a form of Cartesian genetic programming
(CGP) [Miller and Thomson 2000]. The cell’s genotype encodes the logic struc-
ture of the EU and NSCG.

2.2 Chemical Diffusion

The chemical diffusion module mimics aspects of the real environment in which
biological organisms live. As the form of chemical diffusion used in this sys-
tem would in nature occur within extra-cellular space, a strict biological model
would not incorporate this process within the artificial cell. However, it is
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more convenient to merge this process into the cell’s internal structure. The
chemical signal, encoded in 4 bits, enables the transfer of information between
cells. The process of chemical diffusion allows cells to send long-distance mes-
sages. Furthermore, the chemical signal provides a means to transform a dead
cell into an operational living cell. Previous experiments [Liu et al. 2005] sug-
gest that chemicals are indispensable in order to achieve robust solutions;
without chemicals; evolved individuals have poor stability and much lower
fitness.

The chemical diffusion rule employed in this work is similar to that used in
Miller [2003] except in this model only 4 immediate neighbors are used. The
rule is given in Equation (1). The chemical level at the next time-step at position
(i, j) is calculated from the current chemical level at position (i, j), and those of
the 4 immediate neighboring positions (k, l).

(Cij)t+1 = 1
2

(Cij)t + 1
8

∑

k,l∈N

(Ckl )t . (1)

The result is that each cell retains half of its previous chemical and dis-
tributes the other half equally to its four adjacent cells and receives the diffused
chemical from them. Governed by this diffusion equation, it is the task of the
chemical diffusion module to perform diffusion by updating a cell’s chemical
level and propagating the new calculated value to the four adjacent cells.

2.3 Digital Organism Growth

Starting with an evolved genotype that specifies the cellular structure, a zygote
is placed at the center of the grid-based artificial environment. Initially, apart
from the zygote cell, all other cells are dead (in state 0). The central positioning
of the zygote speeds up the growth as it takes the least time for the digital

Algorithm 1. Organism Growth Algorithm

1: Initialise zygote and environment chemical.
2: repeat
3: Perform chemical diffusion.
4: Simultaneously update the cells’ state.
5: if no chemical exists at a position or the cell and

its four neighbours are dead then
6: Cell’s genotype encoded program is not executed
7: else
8: Cell’s genotype encoded program is executed

generating the cell’s next chemical and state values.
9: end if

10: if the next state generated is alive then
11: Overwrite this position’s chemical with new chemical value.
12: else
13: Do not alter the chemical at this position.
14: end if
15: until the stopping criterion has been reached.
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Table I. Available Molecule Functions

Name Algebraic Expression Circuit

MUX1(A,B,C) AC + BC

MUX2(A,B,C) AC + BC

MUX3(A,B,C) AC + B C

MUX4(A,B,C) AC + B C

organism to cover the whole environment. The inputs to the cells located at
the border of the environment are fixed to 0. The cells in the model require
the presence of chemicals to live, therefore, some initial chemicals must be
injected at the position of the zygote. Given a genotype, the growth procedure
is described in Algorithm 1.

The model used in this article was inspired by software simulation of the
French Flag problem [Wolpert 2002]. However, this experiment incorporates the
EUs to enable a more practical application. The first such application, chosen
due to its simplicity, was a 2-bit multiplier. The task was to evolve a cell circuit
that would grow to become a 3 × 3 cell organism implementing a 2-bit multiplier.
The inputs to the multiplier were connected to the execution signals of cell
(1, 1) and (2, 1), while the output execution signals of cell (2, 3) and (3, 3) drove
the output result.

2.4 Evolving Molecules

The molecule is the fundamental element of the cell’s evolved components. Each
evolvable subcircuit (the EU and NSCG) are composed of several molecules,
each representing a different logic gate. The cell’s genotype encodes the choice
and connectivity of these molecules/gates forming a complete circuit.

The molecule used in this experiment is a 3-input universal logic module
(ULM). The ULM is formed by a 2-1 multiplexer. This choice allows any 2-
input logic function to be implemented. Higher order ULMs could have been
chosen, however, larger fan-in cells incur an increase in wiring density and
complexity [Miller 2003].

The MUX circuit, described in Equation (2) when combined with negated
input variables and constant input values, is able to realize all 2-input functions.
However, the available molecule functions used in this experiment are limited
to the four shown in Table I.

f (A, B, C) = AC + BC. (2)

The available inputs to a molecule in the hardware implementation are con-
strained. As a result, constant logic values are not available as molecule inputs.
However, a constant value can be generated by an upstream MUX. MUX2 with
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Fig. 4. Evolved cell state pattern for 2-input multiplier.

the same value applied to all inputs will generate a logic 0, whereas a similarly
connected MUX3 generates a logic 1.

2.5 Evolution Strategy

Two evolutionary phases are used to create the complete organism genotype.

(1) The first phase evolves the EU circuit and the 3×3 cellular structure re-
quired to implement that circuit. The genotype in this phase consists of two
parts: the CGP part encodes the EU structure, while the other is the states
of the organisms 9 cells. The fitness is measured by the number of correct
bits of the multiplier result output. The multiplier has two 2-bit inputs, so it
has a total of 24 = 16 possible outputs values. As the multiplier has a 4-bit
output, there are 16 × 4 = 64 bits with which to judge a correct multiplier
truth table. Therefore, the maximum fitness value is 64.

(2) The second phase evolves the structures of the NSCG circuits such that a
stable organism will develop into the cellular structure evolved in Phase
(1). This phase is the same as the evolution process described in the French
Flag problem, except for some parameter values [Miller 2003].

One of the patterns found in the first phase is shown in Figure 4. This pattern
utilizes all available cell positions with a diverse and complete distribution of
states. It was chosen as the target configuration of the digital organism along
with its corresponding EU structure obtained via evolution.

2.6 Hardware Implementation and Fault Injection

A FPGA-based implementation of the organism was tested using Xilinx�

hardware and tool-chain. The organism’s developmental process is shown in
Figure 51. It can be seen that the organism matures at 1ns when the state
pattern is identical to that shown in Figure 4.

To test the fault-tolerance abilities of the evolved organism, transient faults
were injected into the organism. After the organism had stabilised to the correct
structure shown in Figure 4, the chemical level at cell positions (2, 1), (2, 2),
(2, 3), and (3, 3) were simultaneously reset to 0. Figure 6 shows the organism’s
recovery. As the organism continues its growth, it recovered flawlessly at 2.4ns,
resulting in the multiplier output regaining the correct value.

1To simplify the creation of these plots, a ModelSim simulation was used to illustrate the hardware
operation.
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Fig. 5. Developmental growth procedure. Traces A and B show the multiplier inputs, Result shows
the output. The evolution of the cell state pattern can be seen in traces States (2:4). The pattern
for a working multiplier is boxed and is also shown in Figure 4. The changing chemical levels are
also shown.

Fig. 6. Injection of the first set of faults (chemical disruption) and the recovery procedure.

Once the organism had again stabilized to the correct structure, the state
of the cells at positions (2, 1), (2, 3), and (3, 1) were simultaneously reset to 0
(dead cell). Figure 7 shows the recovery process after this second set of transient
faults. The states of the 3 selected victim cells recover completely to the correct
pattern at 4ns.

3. CONTINUOUS EVOLUTION

The majority of evolutionary algorithms stop when an acceptable solution
has been found. However, in reality, evolution is a continuous process. Here
we show that by using this continuous evolutionary approach, it is possi-
ble to produce systems that will continue to operate successfully even in the
presence of faults [Tyrrell et al. 2004]. This principle is demonstrated using
a simple robotic application, although the results should be generic to any
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Fig. 7. Injection of the second set of faults (state disruption) and the recovery procedure.

Fig. 8. The Khepera robot performing obstacle avoidance.

application. The experiments, detailed in the following, use a Khepera robot
[KTeam] as a platform for the continuous evolution of an object avoidance con-
troller (Figure 8).

The novel evolutionary algorithm used in this work is made up of a pop-
ulation of parents and a number of subpopulations created by cloning par-
ents. These clone populations are used to search for innovative solutions that
track dynamic changes in the environment. It is plausible from an engineer-
ing view point that the innovation populations should undergo mutation at a
rate derived from their fitness, thus reflecting the adaptability of the individual
to that environment. Mutation is therefore carried out as follows: individuals
with high fitness are subject to a low mutation rate, while individuals with low
fitness are subjected to a high mutation rate. For the robot navigation prob-
lem, the mutation rate, defined according to an individual’s fitness, is given in
Equation (3)

n = k(1 − norm fit), (3)

where n is the number of bits to be mutated, k is a constant to be tuned by the
user, and norm fit is the normalized fitness for the population of parents.
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Evolution starts with an initially randomized parent population P . This pop-
ulation is cloned μ times, resulting in μ cloned populations, C, each the same
size as the original parent population. The cloned populations undergo muta-
tion, resulting in μ mutated populations, C′. The mutated clone populations
and parent population are evaluated and then ordered in a single list according
to fitness. The fittest individuals from the list are used to create the parent pop-
ulation for the next generation, the remaining individuals are discarded. The
parent population, P , is not mutated in order to make sure that good parent
individuals are not lost by the mutation operation this way, a form of elitism is
undertaken.

Choosing an appropriate fitness measure is an important part of designing
an evolutionary algorithm. Special consideration must be taken for the robot
controller fitness measure as individuals will encounter different aspects of a
dynamic environment. For our robot navigation problem, the controller’s fitness
is determined by simply measuring the time and distance the robot has run
before hitting an obstacle; the more time elapsed without collision and the
greater the distance traveled, the higher the fitness value. This fitness measure
is calculated as in Equation (4)

fitness = distance × time
1000

. (4)

Distance is measured using wheel rotation counters built into the robot. A
distance of 1000 represents a movement of approximately 40mm. If the robot
is turning, no adjustment to the distance value is made. To limit the time that
each controller is trialed, a maximum time limit of 140s is imposed. Individuals
are killed when this limit is reached even if a collision has not occurred. Fur-
thermore, if an individual is stuck in the same position without any distance
improvement, it is killed. The fitness limit in the experiment is about 1400,
which means the robot moved forward without any steering change. At the
start of evaluating a new individual, an escape time is provided to allow move-
ment away from a potential dead zone where the last individual was killed.
Clearly, since only one robot is used, only one individual is running at a time.

3.1 Experimental Results

For the following experiments, a parent population size of 16 was used; this was
cloned three times (μ = 3) to result in a total population size of 64 (16+(3×16)).
In order to compare the results, a baseline experiment was performed where
the individuals of the cloned populations experience a constant mutation rate of
8 bits per-bit string. Figure 9 shows the results for this experiment. All results
presented are for the population of parents, and the fitness values are average
values of 10 runs.

The next experiment makes use of the mutation rate defined by Equation (3).
It can be observed from the results in Figure 10, where k = 16, that the mu-
tation operator is very important to evolve a controller for autonomous robot
navigation. It might be argued that it is quite difficult to obtain adaptive be-
havior with a constant mutation rate.
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Fig. 9. Behavior for the best and average fitness of the population of parents (P) when a constant
mutation rate was applied to the individuals of the cloned populations (C).

Fig. 10. Behavior for the best and average fitness of the population of parents, P , when the
mutation rate for the individuals of the cloned populations (C) was calculated according to 16*(1-
norm fit).

3.2 Fault Injection

The following results demonstrate the effects of applying faults to the robot’s
proximity sensors. This can be considered equivalent to the dynamic nature
of the environment affecting sensory data due to noise or sensor failure. For
the following experiments, the maximum number of bits mutated in the cloned
populations is set to k = 16. Faults were introduced by covering the robot’s prox-
imity sensors used for navigation with paper masks. This results in the blocked
sensor outputting a fixed reading. The results shown in Figure 11 illustrate
the effect of the robot having a single failed sensor throughout the experiment.
This shows that the algorithm is still able to evolve an effective controller with
a reduced number of sensory inputs.

For the next experiments a fault was added at runtime. Once an acceptable
controller had been evolved, a fault was applied to one of the robot’s proximity
sensors. Figure 12 shows the result of applying a sensor fault at generation 50.
This fault disrupted the whole population of controllers. It can be observed that
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Fig. 11. Behaviour for the best and average fitness of the population of parents, P , when a prox-
imity sensor fault is applied before evolution starts.

Fig. 12. Behavior for the best and average fitness of the population of parents, P , when a proximity
sensor fault is applied at generation 50.

both the average fitness and the fitness of the best individual dropped when the
fault was applied. However, after around 10 generations, the fitness of the best
individual climbs up and regains its original value. This result demonstrates
that while immediate failure is not prevented, when a fault occurs, the system
does quickly recover as fitness is regained.

4. DEDICATED HARDWARE

The previous two sections have discussed techniques for increasing dependabil-
ity using evolutionary and developmental methods implemented on commercial
FPGAs. In this final example, dependable architectures using hardware that
has been specifically designed to assist evolutionary methods will be considered.

The goal of the project was to design and build an ASIC with features
amenable for bio-inspired work and, in particular, embryonics and dependable
system design. The main novel features, setting the architecture and device
apart from conventional programmable devices, are the following.
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Fig. 13. The RISA architecture. A two-dimensional array of highly reconfigurable RISA cells.

—A distributed routing algorithm that performs automated creation of connec-
tions between parts of the chip.

—The ability to perform intrinsic partial reconfiguration without disrupting
circuit operation.

—A random configuration-safe architecture such that random configuration
bitstreams will not damage the chip.

—A microcontroller array with a dedicated microcontroller per-device cell.

The Reconfigurable Integrated System Array (RISA) [Greensted and Tyrrell
2007] is a novel form of field programmable digital device. The architecture is
formed by a two-dimensional array of RISA Cells, each containing a microcon-
troller and a section of FPGA; this combination forms the Integrated System
referred to by the architecture name. An illustration of the RISA architecture
is shown in Figure 13.

The RISA architecture is inspired by the structure of biological organisms.
In particular, the microcontroller/FPGA combination used within each RISA
cell reflects the structure and operation of real cells. As biological cells perform
system functions and control the embryonic development process, the electronic
RISA cell must also contain this functionality. The RISA cell’s microcontroller
acts as the cell nucleus. It is able to control cell specialization using stored
configurations, analogous to DNA, to implement different cell functions, de-
pending on cell location. The FPGA fabric then provides the platform on which
subsections of the system circuitry may be implemented. The mapping between
biological and electronic domains is illustrated in Figure 14.

Past embryonic architectures have been implemented on FPGAs [Ortega
et al. 2000]. However, despite their role as quick prototyping and testing
platforms, the inefficiency of implementing a reconfigurable platform within
another means commercial FPGAs are not suitable for the RISA architecture.
Therefore, an ASIC implementation of the RISA design has been fabricated.
Two particular design features necessitating a custom ASIC are the mi-
crocontroller array and an FPGA fabric that supports fine-grained partial
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Fig. 14. The biological to electronic mapping of the RISA architecture. The RISA cell must contain
sufficient functionality to perform the cell’s function and to drive differentiation.

reconfiguration. These two main aspects of the RISA design are detailed in
Sections 4.1 and 4.2, respectively.

4.1 SNAP Microcontroller

Each RISA cell microcontroller is responsible for the functional specialization
of the cell. This involves determining the cell’s position within the system and
configuring the cell’s FPGA fabric accordingly. Rather than using a hard-coded
state machine to control this process, a microcontroller core has been employed
to provide the flexibility for investigating different differentiation methods. Fur-
thermore, this approach allows other processor array-based applications to be
implemented on the RISA architecture.

A custom microcontroller core was developed for the RISA architecture. The
Simple Networked Application Processor (SNAP) is a 16-bit RISC core with a
number of peripheral modules providing extra functionality. The SNAP core
is illustrated in Figure 15. As already mentioned, the main role of the mi-
crocontroller is to control the configuration of the cell’s FPGA fabric. In order
to simplify this task, the microcontroller contains dedicated configuration ac-
cess ports (CAPs) to access the FPGA configuration chains. Furthermore, the
SNAP instruction set has been specifically designed to include instructions that
simplify the task of bitstream creation and manipulation. A set of peripheral
modules are available to the user via the core’s register file. Modules include
a random number generator, general purpose counters, and a UART. To sim-
plify the task of creating a SNAP network, each core includes four SNAPLink
modules. These provide independent, full duplex, flow controlled connectivity
to all four neighboring cells. Intermicrocontroller communication is as simple
as reading from and writing to the SNAPLink registers.

The SNAP microcontroller uses a von Neumann memory architecture. This
approach makes more efficient use of the core’s limited memory by avoiding
wasted program memory space that could be used for data storage. To further
reduce memory requirements, the SNAP design promotes compact assembler
code. This is achieved in two ways. First, all SNAP instructions can be made
conditional on the state of core status flags. This approach helps remove the
need for separate test instructions prior to a branch. Second, by accessing all
peripheral modules through the register file, peripheral data may be directly
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Fig. 15. The SNAP microcontroller, in summary, a 16-bit data width, 16-bit address space, 4-stage
pipelined, RISC, von Neumann memory design. Peripheral modules, accessed via the register file,
provide extra functionality.

written to or read from by all instructions, without having to also use memory
read and write instructions.

4.2 FPGA Fabric

The FPGA fabric used with the RISA architecture, like any commercial FPGA,
should be sufficiently flexible to implement a multitude of different circuit de-
signs. However, unlike standard FPGA devices, the RISA architecture uses a
considerably more flexible configuration system. This satisfies the requirement
of embryonic arrays for fine-grained partial reconfiguration, the ability to tar-
get and reconfigure small areas of the FPGA fabric without having to take the
remaining areas offline.

The RISA configuration scheme attempts to provide flexibility and simplicity
to the designer. Reconfiguration takes place without affecting the current con-
figuration. Furthermore, once the new configuration data is in place, it can be
made active, replacing the old configuration in a single clock cycle. FPGA logic
configuration is separated from that of the routing, which makes reconfigura-
tion faster if only the logic or routing needs altering. It is also possible, using
the configuration circuitry, to read back a snapshot of FPGA register values.

An important design feature of the RISA FPGA architecture is the ability
to safely perform random configuration manipulation without risking device
damage. It is the routing architecture that makes this possible. RISA routing is
multiplexer-based rather than bus-based. This approach removes the possibil-
ity of bus contentions that may lead to device damage. Furthermore, the routing
design removes the possibility of creating combinatorial feedback paths. This
property makes the RISA architecture ideal for investigating evolvable hard-
ware designs.
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Fig. 16. The FPGA fabric is formed by an array of clusters. Each cluster contains four function
units that contain the configurable logic elements.

To achieve a random configuration-safe architecture, the FPGA fabric is or-
ganized into four combinatorial directions. The main configurable element of
the FPGA is the cluster. Each cluster contains four function units assigned to
a different direction, north, east, south and west. Intercluster combinatorial
connections can only be made between function units of the same direction.
In this way, it is not possible to form a combinatorial loop. Direction changes
must be made via a registered connection. The FPGA fabric is illustrated in
Figure 16.

4.3 The RISA Chip

The RISA architecture has been fabricated using UMC’s 0.18μm 1P6M logic
process. A cell-based approach was used as it provides a simple method for a first
ASIC run [Smith 1997]. Due to the density limits this approach imposes, the
first RISA chip only implements a single RISA Cell. The greater portion of the
chip’s die area was used in implementing the FPGA, the density of which could
be substantially improved by taking a full custom approach especially that of
the FPGA routing circuitry. However, as the RISA architecture is array-based,
it has been specifically designed to allow the abutment of separate devices to
create larger arrays. This means that the current chip is still appropriate for
forming a full RISA architecture with multiple RISA cells.

4.4 Specialization and Routing Algorithms

Traditional embryonics uses a simple Cartesian grid to determine cell location
and thus specialization [Jackson 2003; Mange et al. 2000]. However, as this
approach requires the removal of a complete array row or column in order to
replace a faulty cell, repair is wasteful of resources. The approach taken in
this work uses a more efficient routing algorithm based on ideas from com-
putational topology and geometry. The algorithm performs initial routing and
subsequent rerouting for fault recovery. The algorithm makes use of discrete
Morse-Lyapunov functions to track the availability of chip resources, that is,
the utilization of RISA cells. The algorithm operates on rooted binary trees
bound within a finite region of a Euclidean plane. In a purely distributed
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Fig. 17. The cell routing algorithm in operation. The images shows how a graph of connected cells
is relocated and rerouting after a cell failure has occurred. The blockage shows how the graph has
to be placed around dead cell locations.

fashion, the algorithm assigns weighting values to each node in the graph.
These values represent the size of a particular node’s subtree. When reconfig-
uration is required, the weightings are used by each graph node to determine
a path for graph redirection. In this way, the algorithm provides the ability to
perform complex deformation of the original circuit structure in a distributed
manner while maintaining the system’s functional integrity. Figure 17 shows
an example of a graph that has rerouted after a node has been failed.

5. CONCLUSION

This article has described three different directions in evolvable hardware re-
search; an evolved development circuit to drive the self-organization of a multi-
cellular system, an algorithm for continuous evolution in order to achieve con-
tinual adaptation to a changing environment, and a new hardware platform
specialized for investigating evolutionary processes.

The evolution of a developmental system has been described where a digital
system is grown via embryonic development of digital hardware cells. Mor-
phogenic chemicals are used to mimic the pattern formation process of embry-
onic growth. Artificial evolution was used to develop the internal circuitry of cell
execution units that provide cell function and next state and chemical genera-
tors that drive the differentiation of the organism. Experimental results have
demonstrated that the developed system is able to tolerate transient faults in
the form of cell state and chemical-level disruptions. After the injection of these
faults, the circuit is able to regrow back into a fully functional circuit.

The continual evolution research reflects that in nature the evolution of a
species does not stop when strong individuals are bred, rather evolution con-
tinues to allow subsequent generations to adapt to environmental changes.
Experimental results using a Khepera robot have shown that a continual evo-
lution algorithm is suitable for creating an autonomous navigation controller
for collision avoidance even with the occurrence of sensor faults. The following
important features with regard to autonomy, adaptability, and robustness were
observed.
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—By using a mutation rate defined according to the fitness of the individual,
it is possible to obtain good adaptability in changing environments.

—A robust controller undergoing continual evolution can reevolve in order to
continue operation in the presence of faults.

It was demonstrated that despite the introduction of permanent faults, the
evolutionary process ensures the system recovers to full functionality. Such an
ability would be of great benefit to applications such as unmanned space and
underwater missions where the lack of an adaptation mechanism could lead to
mission failure in the event of system faults.

Finally, a description of the RISA architecture, a new FPGA-like device de-
signed specifically for use within the bio-inspired community, has been given.
The device provides an advanced reconfigurable hardware platform suitable
for investigating embryonics. Furthermore, the ability to safely use random
configuration bitstreams and be able to target specific areas of the device’s re-
configurable fabric makes the RISA chip far more suitable than commercial
devices for evolutionary hardware research.

A routing algorithm designed for use with the RISA architecture has been de-
scribed. Compared to traditional embryonic architecture, this algorithm makes
more efficient use of system resources when reconfiguring a system to circum-
vent faults.
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