
Extrinsic Evolvable Hardware on the
RISA Architecture

A. J. Greensted and A. M. Tyrrell

Intelligent Systems Research Group,
Department of Electronics,

University Of York,
Heslington, York, UK,

YO10 5DD
{ajg112, amt}@ohm.york.ac.uk
http://www.bioinspired.com

Abstract. The RISA Architecture is a novel reconfigurable hardware
platform containing both hardware and software reconfigurable elements.
This paper describes the architecture and the features that make it
suitable for implementing biologically inspired systems such as the
evolution of digital circuits. Some of the architecture’s capabilities are
demonstrated with the results of evolving a simple combinatorial circuit
using one of the fabricated RISA devices.

1 Introduction

Evolvable hardware provides a unique challenge to hardware engineers. In a
field that uses well defined components, design tools and procedures, evolving
electronic circuitry requires the ability to instantiate and connect circuit elements
in a random fashion. This is of course quite contrary to the intended role of
most standard electronic devices. Those wishing to investigate evolving electronic
circuits work outside these constraints in order to achieve their goals.

Field Programmable Gate Arrays (FPGAs) [1] provide a useful platform for
evolving circuits. Their reconfigurability provides a method repeatedly evaluate
the fitness of the candidate solution circuits encountered during an evolutionary
process. However, commercial FPGAs still impose difficulties when implementing
evolvable hardware systems.

At the heart of these difficulties is the proprietary configuration bitstream
used to configure commercial FPGAs. Without knowledge of the bitstream’s
construction, it is difficult to use an evolutionary process to create and test
low-level bitstream based candidate solutions without risking device damage.
Without resorting to well documented, simplistic, or out-of-date technology like
the Xilinx® XC6200 [2], or proprietary bitstream manipulation tools, such as
the also out-of-date JBits API[3], users must utilise a reconfigurable super-
platform on top of an existent FPGA [4, 5]. Although this strategy works well,
the inefficiency of creating one reconfigurable architecture using another reduces
the size of circuit that may be created.

An alternative strategy is to design and fabricate a new reconfigurable archi-
tecture specifically with biologically-inspired systems, like evolvable hardware, in
mind. Projects such as POEtic[6, 7] have taken this route. The main advantage
is a greater efficiency in circuit use and modes of operation appropriate to the
required task. A third alternative is to completely remove the constraints of
electronics entirely and evolve systems using alternative substances [8].

The work described in this paper takes the first of these alternative
approaches, a novel digital electronic architecture, designed for implementing
bio-inspired systems, such as the evolution of digital circuits. The Reconfigurable
Integrated System Array (RISA) [9] addresses a number of the shortfalls of using
commercial reconfigurable devices for evolution: the ability to safely apply ran-
domly generated configuration bitstreams, fine grained partial reconfiguration
and a fully documented bitstream structure.

The paper is organised as follows: Section 2 provides an introduction to the
RISA architecture. Sections 2.1-2.2 and 2.3 describe the two main constituent
parts of the RISA architecture, a custom FPGA Fabric and microcontroller
core respectively. Fabrication details of the initial RISA Device are given in
Section 2.4. An initial evolvable hardware experiment using the RISA platform
is described in Section 3. Ideas for future development are outlined in Section 4.
Conclusions are made in Section 5.

2 RISA

The Reconfigurable Integrated System Array (RISA) is a digital electronic
architecture designed for exploring biologically inspired systems. RISA extends
the standard FPGA paradigm by integrating distributed reconfigurable software
elements with reconfigurable hardware resources. The architecture’s name
reflects that each element of the array comprises a whole integrated system,
the combination of a microcontroller with an area of gate array fabric. Figure 1
illustrates the RISA architecture.

The structure of the RISA cell allows a number of different system config-
urations to be implemented. Each cell’s FPGA fabric may be combined into a
single area and used for traditional FPGA applications. Similarly, the separate
microcontrollers can be used in combination for multi-processor array systems
such as systolic arrays [10]. However, the intended operation is to use the
cell parts in conjunction, allowing the microcontroller to control its adjoining
FPGA configuration. This cell structure is inspired by that of biological cells.
As illustrated in Figure 2, the microcontroller provides functionality similar to a
cell nucleus. By storing and manipulating different FPGA configurations, which
are analogous to DNA, the cell’s overall functionality, performed by the FPGA
fabric, can be controlled and altered.

2.1 The RISA FPGA Fabric

The RISA FPGA fabric uses an island-style architecture [11]. The fabric design
does not attempt to compete with commercial FPGA designs in terms of

FPGA

uC

FPGA

uC

FPGA

uC

FPGA

uC

FPGA

uC

FPGA

uC

RISA
Cell

IO BlocksIO BlocksIO Blocks

IO Blocks IO Blocks IO Blocks

IO
 B

lo
c

k
s

IO
 B

lo
c

k
s

IO
 B

lo
c

k
s

IO
 B

lo
c

k
s

microcontroller

Fig. 1. The RISA Architecture comprises an array of RISA Cells. Each cell
contains a microcontroller and a section of FPGA fabric. Input/Output (IO)
Blocks provide interfaces between FPGA sections at device boundaries. Inter-
cell communication is provided by dedicated links between microcontrollers and
FPGA fabrics.

FPGA

uC

RISAOrganism

Cell

Nucleus
(with DNA)

RISA
Cell

Organism

Cell

Nucleus

DNA

Biological

RISA

RISA Cell

uC
Configuration

Bitstreams

Electronic

Fig. 2. The structure of the RISA cell is based upon biological cells. The
microcontroller operates as a centre of cell operations, controlling the cell
functionality implemented in the FPGA fabric. FPGA fabric configuration
bitstreams may be stored and manipulated in the microcontroller.

density or flexibility of implementable circuits. However, the RISA fabric does
provide fine grained partial reconfiguration allowing small areas of the fabric
to be targeted for reconfiguration. Also the fabric is random configuration safe,
so evolved bitstreams will not cause physical damage to the device. Equally
important, the design enables full access to the format of the configuration
bitstream. This provides the opportunity for custom bitstream generation and
the reverse engineering and inspection of evolved bitstreams.

The lowest level of the RISA FPGA fabric is the Function Unit, shown in
Figure 3. The main parts are a Function Generator, a 2:1 multiplexer and a D
flip-flop. Combining these units provides the functionality listed below.

– 4 input, 1 output Look-Up Table (LUT)
– 16x1 bit RAM block
– 1 to 17 bit variable length Shift register (via external local routing)
– 4-1 multiplexer (when used with the 2-1 multiplexer)
– 1 bit full adder (when used with the carry chain)

fgEnable

0
1

enable

mode(0)

0
1

0 1

0
1

0
1

0
1

0
1

0 1

0
1

shChnIn cyChnOut

shChnOut cyChnIn

muxDOut

fDOut

muxDIn(0)

muxDIn(1)

muxSel

fDIn

mode(1)

dIn(0)

dIn(1)

dIn(2)

dIn(3)

regDOutregDIn

regEn

regSet

regReset

clk

dIn

clk

add(0)

mode(0)

mode(1)

enable

dOut

shiftOut

add(1)

add(2)

add(3)

d q

en

s r

regR

regS

regE

regD

muxA

muxB

muxS

carryInject

muxS1

fgDOut

bigMuxOut

muxOut

FOutSelect

CySelect

abMuxOut

Function
Generator

fgMode(0)

fgMode(1)

ExtMux

DInSelect

fgDIn

sel

data

c
a

rry

data

CarryMuxABMux

BigMux

1
0 regOut

RegDInSelect

configurableRegister

configurableBit

12

14

13

15

3

4

0

2

1

22 37

7

9
8

10

11

6

5

16

18

19

20

21

17

Fig. 3. The RISA Function Unit is the lowest level of the FPGA fabric structure.

The Cluster is the next level of FPGA structure. Each Cluster contains
four Function Units, local routing, and connections to inter-cluster routing.

Clusters are arranged in a square grid to form the FPGA fabric. Figure 4a shows
this arrangement. The figure also illustrates a key part of the fabric’s routing
scheme. Each of the Cluster’s four Function Units is assigned to a different
routing direction. The direction dictates how a Function Unit’s circuitry may be
connected.

Cluster

North East

SouthWest

Function
Unit

(a)

Eastbound
inputs

Eastbound
outputs

FPGA Fabric

(b)
Westbound
Inputs

N,S & W
Registered

Outputs

Registered
Circuitry

Combinatorial
Circuitry

d q
en

East Function Unit

Southbound
Inputs

Eastbound
Inputs

Northbound
Inputs

Eastbound
Combinatorial
Outputs

Eastbound
Registered
Outputs

Eastbound Registered &
Combinatorial Feedback OutputN,S & W

Feedback
Outputs

Cluster (Eastbound Connections Only)

Combinatorial
Inputs

Registered
Inputs

Combinatorial
Input Mux

Fig. 4. The multiplexer based FPGA routing design can be randomly configured
without risk of forming combinatorial feedback paths or signal contentions.
Combinatorial paths may only be connected within their assigned directions.
Registered paths can connect to all signal directions.

In order to achieve a random configuration safe architecture, two configura-
tion scenarios must be avoided: the possibility of signal contention and the cre-
ation of combinatorial feedback paths. The former causes a high current to flow
between alternatively driven wire endpoints, which can lead to device damage.
The latter can create fast oscillations, which unnecessarily consume power, cause
noise in neighbouring signals via crosstalk and can cause metastability issues on
connected registers. The directed Function Unit scheme and multiplexer based
routing prevents both these problems.

Figure 4b illustrates the input and output routing of a single Function Unit,
in this case the Function Unit assigned to the east direction. Table 1 summarises
how signals may be routed. The only restriction is that connections between

combinatorial signals must be of the same direction. This stops an unregistered
loop being created.

Inputs

O
u

tp
u

ts

Combinatorial Registered

Combinatorial

Registered

Any

AnyAny

Of the same
direction

Table 1. Function unit connectivity. The routing of combinatorial signals is
limited to remove the problem of combinatorial feedback paths.

2.2 Fabric Configuration

The configurable resources of the FPGA fabric are divided into either routing or
logic; routing being the FPGA connectivity, logic being the functional circuitry.
The RISA configuration process supports the features listed below.

– Concurrent configuration of routing and logic resources.
– Reconfiguration without disrupting the currently operating configuration.
– Single clock cycle configuration switching.
– Configuration readback with device state inspection.

Two pairs of serial data chains, one pair for routing, the other for logic, are
used for loading configuration information into the fabric. Each pair comprises
a chain for selecting a target for configuration and a chain for shifting the actual
configuration data. It is this approach that provides the partial reconfiguration
feature of the RISA architecture. Figure 5 illustrates the configuration circuitry
for a single chain pair. The same circuit design is used for both routing and logic
configuration.

Figure 5a shows the ConfigSelectUnits that are used to select or bypass
sections of the configuration chain and thus areas of configurable fabric. Figure
5b shows the two types of element that make up the configuration chain. The
ConfigurableRegister is a D-type flip-flop that can have its initial value set and
its state read back. The ConfigurableBit is used for setting single bit control
lines, such as multiplexer selection bits and signal inverter states. Examples of
these configurable elements can be seen in the Function Unit shown in Figure 3.

The lowest level unit selectable for configuration, either routing or logic, is the
Cluster. Using the selection chains, any arrangement of Clusters can be targeted.

2.3 SNAP, the RISA microcontroller

A microcontroller core is incorporated into each RISA cell. Within the RISA
architecture, these microcontrollers form a processor array. A custom micro-
controller, the Simple Networked Application Processor (SNAP), was designed
specifically for the RISA architecture.

d q
en

d q
en

d q
en

Configurable Register Configurable Bit

d qen q

cnfDIn

cnfLoadEn
cnfShiftEn
cnfReadBackEn

cnfDOut

ConfigSelectUnit

Configure Bus

d q
en

selChainDIn selChainDOut

ConfigSelectUnit

d q
en

selShiftEn

d q
en

(a)

(b)

0
1

0
1

0
1

0
1

1
0

Fig. 5. Routing and Logic configuration can be configured separately, each using
a pair of serial data chains. Each pair comprises a target selection chain and a
configuration chain. (a) Shows the target selection circuitry. (b) Shows the two
types of configurable element.

The SNAP core is, in summary, a 4 stage pipelined, RISC, Von Neumann
memory design with a 16 bit data width and address space. It includes a set of
interfacing links dedicated to inter-core communication. Furthermore, the core
is tightly integration with the RISA FPGA fabric. The core includes a number
of modules similar to those found in many commercial microcontrollers [12] such
as timers, UARTs, a watch dog timer and general purpose IO ports. A hardware
random number generator is also included.

One set of features that makes the SNAP design novel are the techniques
used for integration with the FPGA core. First, configurable IO ports that
connect directly to the FPGA fabric are built into the microcontroller’s register
file. Second, signals routed from the fabric can directly determine instruction
execution; condition codes controlled by these signals can be encoded directly
into instructions. Using this technique, blocks of code can be enabled depending
on FPGA signal values without the need for more timely test code. Last, the
SNAP microcontroller has direct access to the FPGA’s configuration chains. Four
access ports connect to each configuration chain, all being operable concurrently.

2.4 The RISA Device

So far the RISA project has produced one run of fabricated RISA devices. A cell-
based 0.18µm process was used, the die layout is shown in Figure 6. Each device
of this initial revision contains a single RISA cell. The FPGA fabric contains 36

Clusters, in a 6x6 grid. As can be seen, the FPGA fabric accounts for the larger
area of the device. As with commercial FPGAs, routing takes up a great deal
of the die area [13], especially in this case due to the routing being multiplexer
based.

IO Block

Cluster

Upper
Memory

Block

SNAP
Core

Lower
Memory

Block

Random
Number

Generator

Core
Power
Stripe

Core
Power
Ring

0.0 0.5 1.0mm

Fig. 6. The first fabricated version of the RISA architecture contains a single
RISA Cell. The FPGA fabric accounts for the majority of the die area. The die
is 5mmx5mm in size and fabricated using a 0.18µm process.

3 Evolvable Hardware using the RISA platform

A simple evolvable hardware experiment has been undertaken to demonstrate
the RISA platform in operation. The initial experiment uses one RISA device,
containing a single RISA cell. The cell’s FPGA fabric was used to evolve a simple
circuit. Figure 7 shows the experiment setup. The device motherboard, shown in
Figure 7a, contains a Xilinx® Spartan FPGA which is used to apply test vectors
to the RISA device straddled above, as shown in 7b.

For the experiment presented here, the evolutionary algorithm is performed
extrinsically on the Xilinx® FPGA. RISA FPGA fabric configurations are
downloaded from the Xilinx FPGA to the RISA device via the Configuration
Access Port. Input vectors are applied to and circuit outputs are read from
the RISA FPGA fabric via the IOBlocks. This setup is shown in Figure

Xilinx
Spartan
FPGA

XC3S500E RISA
Device

Xilinx FPGA
Download

Cable

RISA Device
Download

Cable
Power

Regulator

(a) (b)

Fig. 7. (a) The RISA device motherboard without RISA device attached. (b)
The experiment setup, with RISA device connected (Serial cable not shown).

8a. The Xilinx Embedded Development Kit (EDK) was used to implement
the evolutionary algorithm running on a Microblaze soft core. With future
development the aim is to move the evolutionary algorithm into the on-board
SNAP microcontroller. Furthermore, multiple RISA cells will be used to speed
up evolution time by performing multiple fitness evaluations in parallel.

FPGA
Fabric

RISA
Device

IO
 B

lo
c
k
s

Configuration
Access Port

IO Blocks

IO Blocks

IO
 B

lo
c
k
s

SNAP

Xilinx
FPGA

XC3S500E

Input
Vectors

Output
Vectors

FPGA
Fabric

D0
D1
D2
D3

PE
PO

(a)

(b)

West
IOBlocks

East
IOBlocks

Fig. 8. (a) Circuits are evolved within the RISA FPGA fabric under the control
of the motherboard’s Xilinx® FPGA. (b) Input vectors are applied to the FPGA
fabric via the west IO blocks. The output data, for this experiment parity data,
is read from the east IO blocks.

The evolutionary algorithm is designed to evolve a 4 bit parity generator,
calculating both odd and even parity. The input and output assignments are
shown in Figure 8b. The aim at this early stage in system development is to prove
the RISA architecture can be used for evolving circuits, rather than increase the
complexity bounds of evolved hardware.

The evolutionary algorithm parameters are as follows; population size of 32;
tournament selection size of 4; a generation limit of 400. Figures 9a and 9b show
the mean fitness with positive and negative standard deviations for 100 runs.
Figure 9a shows the results for a mutation rate of 4 out of 256, or 1.56%. 86 out
of 100 runs found a successful solution. Figure 9b shows the result for a mutation
rate of 2 out of 256, or 0.78%. The number of successful runs were 89 out of 100.

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 50 100 150 200 250 300 350 400

F
itn

es
s

Generation

(a)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 50 100 150 200 250 300 350 400

F
itn

es
s

Generation

(b)

Fig. 9. Fitness against generation averaged (mean) over 100 runs when evolving
4-bit parity generator. Also shown are positive and negative standard deviations.
(a) has a mutation rate of 4 out of 256, (b) 2 out of 256.

The evolutionary algorithm makes use of only the east bound direction of
cluster Function Units. Furthermore, only the combinatorial circuitry is utilised.
A novel, and completely feasible, approach to accelerating evolution time would
be to make use of all four Function Unit directions concurrently. This would
allow four candidate configurations to be loaded and tested together.

4 Future Development for the RISA Architecture

The RISA architecture was designed for array based systems. Although, as
Section 3 demonstrates, interesting experiments can be performed using a single
RISA cell, the architecture’s true power is in performing multicellular system
operations. The next stage in the architecture’s development is the implementa-
tion of different multicellular systems, such as fault tolerant Embryonic Arrays
[14, 15]. Work is currently underway to develop a novel distributed rerouting
algorithm for circumventing faults in array based circuits. The system can be
realised by implementing system functionality in RISA cell FPGA fabric and
the routing algorithm in the SNAP microcontrollers.

Other fault tolerant multicellular systems such as developmental systems
[16, 17] and endocrinologic architectures [18] are also fully implementable using
RISA devices. The design and manufacture of a multi-RISA device motherboard
to support these systems is underway.

As the RISA architecture is a completely custom design, the suite of
supporting software tools also need developing. The experiment outlined in
Section 3 provided a practical way of developing and testing these tools. So
far an assembler, configuration API and bitstream manipulation API have been
created.

A major future development is the fabrication of a second revision RISA
device. The main goal of this step will be to incorporate multiple RISA cells
within a single device. As illustrated in Figure 6, the FPGA fabric uses a
considerable area. By moving the ASIC design from cell-based to full-custom,
the fabric density could be significantly reduced.

5 Conclusions

A custom architecture ASIC, called RISA, has been produced to simplifying the
task of creating bio-inspired systems. A random configuration safe reconfigura-
tion system is used, making the RISA platform very suitable for the evolution
of digital circuits. An embedded microprocessor array provides a reconfigurable
software element suitable for implementing rerouting algorithms used in cellular
based fault tolerant systems.

The experiment outlined in Section 3, although simplistic, clearly demon-
strates the operation of the architecture’s hardware reconfigurable fabric. While
the authors do not consider evolutionary algorithms as a particularly useful
approach for creating digital circuits, their use in these experiments demonstrate
the architecture’s ability to perform extrinsically controlled reconfiguration.
This functionality is believed to be critical in many applications that require
adaptation and fault tolerance.

Further information on the RISA device, such a full HDL and schematics, can
be found on the project website: http://www.bioinspired.com/users/ajg112.

6 Acknowledgements

The authors would like to thank the EPSRC (grant number GR/R74512/01)
and the MoD for funding this project. Many thanks also to the members of
Europractice’s Microelectronics Support Centre for their expert assistance with
ASIC development.

References

1. Wolf, W.: FPGA Based System Design. Prentice Hall (2004)
2. Xilinx: XC6200 Field Programmable Gate Arrays - datasheet. (1997)
3. Xilinx: JBits SDK web site. http://www.xilinx.com/labs/projects/jbits/

(2007)
4. Sekanina, L.: Towards evolvable IP cores for FPGAs. In: Proceedings of the 3rd

NASA/DoD Conference on Evolvable Hardware, EH-03, Washington, DC, USA,
IEEE Computer Society (2003) 145–154

5. Sekanina, L.: Virtual reconfigurable circuits for real-world applications of evolvable
hardware. In: Proceedings of 5th International Conference on Evolvable Hardware,
ICES-03. Number 2606 in LNCS, Springer Verlag (2003) 186–197

6. POEtic: Project web site. http://www.poetictissue.org/ (2007)
7. Tyrrell, A.M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.M.,

Rosenberg, J., Villa, A.E.: Poetic tissue: An integrated architecture for bio-inspired
hardware. In: Proceedings of 5th International Conference on Evolvable Systems.
(2003) 129–140

8. Harding, S., Miller, J.: Evolution in materio: A tone discriminator in liquid crystal.
In: Proceedings of the Congress on Evolutionary Computation 2004. Volume 2.
(2004) 1800–1807

9. Greensted, A., Tyrrell, A.: RISA: A hardware platform for evolutionary design. In:
Proceedings of 2007 IEEE Workshop on Evolvable and Adaptive Hardware. (2007)

10. Hwang, K., Briggs, F.: Computer Architecture and Parallel Processing. McGraw
Hill (1984)

11. Betz, V., Rose, J., Marquardt, A.: Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, Norwell, MA, USA (1999)

12. ATMEL: AVR ATmega128 - datasheet. http://www.atmel.com/dyn/resources/
prod documents/doc2467.pdf (2006)

13. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA
performance and density. In: FPGA ’00: Proceedings of the 2000 ACM/SIGDA
eighth international symposium on Field programmable gate arrays, New York,
NY, USA, ACM Press (2000) 3–12

14. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards robust integrated
circuits: The embryonics approach. Proceedings of the IEEE 88(4) (2000) 516–541

15. Ortega-Sánchez, C., Tyrrell, A.: A hardware implementation of an embryonic
architecture using Virtex® FPGAs. In: Proceedings of ICES 2000, 3rd
International Conference on Evolvable Hardware. Number 1801 in LNCS, Springer
Verlag (2000) 155–164

16. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. In:
Proceedings of GECCO 2004, Genetic and Evolutionary Computation Conference,
Springer Verlag (2004)

17. Liu, H., Miller, J., Tyrrell, A.: An intrinsic robust transient fault-tolerant
developmental model for digital systems. In: GECCO 2004 workshop, Genetic
and Evolutionary Computation Conference. (2004)

18. Greensted, A., Tyrrell, A.: Implementation results for a fault-tolerant mulitcellular
architecture inspired by endocrine communication. In: Proceedings of EH 2005, 7th
NASA/DoD Conference on Evolvable Hardware, IEEE Computer Society (2005)

